Squaring operator α-geometric mean inequality
نویسندگان
چکیده
منابع مشابه
Some weighted operator geometric mean inequalities
In this paper, using the extended Holder- -McCarthy inequality, several inequalities involving the α-weighted geometric mean (0<α<1) of two positive operators are established. In particular, it is proved that if A,B,X,Y∈B(H) such that A and B are two positive invertible operators, then for all r ≥1, ‖X^* (A⋕_α B)Y‖^r≤‖〖(X〗^* AX)^r ‖^((1-α)/2) ‖〖(Y〗^* AY)^r ‖^((1-α)/2) ‖〖(X〗^* BX)^r ‖^(α/2) ‖〖(Y...
متن کاملImproved logarithmic-geometric mean inequality and its application
In this short note, we present a refinement of the logarithmic-geometric mean inequality. As an application of our result, we obtain an operator inequality associated with geometric and logarithmic means.
متن کاملSome Functional Inequalities for the Geometric Operator Mean
In this paper, we give some new inequalities of functional type for the power geometric operator mean involving several arguments.
متن کاملAn Arithmetic-Geometric-Harmonic Mean Inequality Involving Hadamard Products
Given matrices of the same size, A = a ij ] and B = b ij ], we deene their Hadamard Product to be A B = a ij b ij ]. We show that if x i > 0 and q p 0 then the n n matrices q j # are positive deenite and relate these facts to some matrix valued arithmetic-geometric-harmonic mean inequalities-some of which involve Hadamard products and others unitarily invariant norms. It is known that if A is p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Inequalities
سال: 2016
ISSN: 1846-579X
DOI: 10.7153/jmi-10-45